Saturday, October 6, 2012

Meltdown: What Really Happened at Fukushima?

By Jake Adelstein and David McNeill

The Atlantic, July 2, 2011: It’s been one of the mysteries of Japan’s ongoing nuclear disaster: How much of the damage did the March 11 earthquake inflict on Fukushima Daiichi’s reactors in the 40 minutes before the devastating tsunami arrived? The stakes are high: If the quake alone structurally compromised the plant and the safety of its nuclear fuel, then every other similar reactor in Japan is at risk.

Throughout the months of lies and misinformation, one story has stuck: “The earthquake knocked out the plant’s electric power, halting cooling to its reactors,” as the government spokesman Yukio Edano said at a March 15 press conference in Tokyo. The story, which has been repeated again and again, boils down to this: “after the earthquake, the tsunami – a unique, unforeseeable [the Japanese word is soteigai] event - then washed out the plant’s back-up generators, shutting down all cooling and starting the chain of events that would cause the world’s first triple meltdown to occur.”

But what if recirculation pipes and cooling pipes, burst, snapped, leaked, and broke completely after the earthquake -- long before the tidal wave reached the facilities, long before the electricity went out? This would surprise few people familiar with the 40-year-old Unit 1, the grandfather of the nuclear reactors still operating in Japan.

The authors have spoken to several workers at the plant who recite the same story: Serious damage to piping and at least one of the reactors before the tsunami hit. All have requested anonymity because they are still working at the plant or are connected with TEPCO. One worker, a maintenance engineer in his late twenties who was at the Fukushima complex on March 11, recalls hissing and leaking pipes. “I personally saw pipes that came apart and I assume that there were many more that had been broken throughout the plant. There’s no doubt that the earthquake did a lot of damage inside the plant," he said. "There were definitely leaking pipes, but we don’t know which pipes – that has to be investigated. I also saw that part of the wall of the turbine building for Unit 1 had come away. That crack might have affected the reactor.”

The reactor walls of the reactor are quite fragile, he notes. “If the walls are too rigid, they can crack under the slightest pressure from inside so they have to be breakable because if the pressure is kept inside and there is a buildup of pressure, it can damage the equipment inside the walls so it needs to be allowed to escape. It’s designed to give during a crisis, if not it could be worse – that might be shocking to others, but to us it’s common sense.”

A second worker, a technician in his late 30s, who was also on site at the time of the earthquake, narrated what happened. “It felt like the earthquake hit in two waves, the first impact was so intense you could see the building shaking, the pipes buckling, and within minutes, I saw pipes bursting. Some fell off the wall. Others snapped. I was pretty sure that some of the oxygen tanks stored on site had exploded but I didn’t see for myself. Someone yelled that we all needed to evacuate and I was good with that. But I was severely alarmed because as I was leaving I was told and I could see that several pipes had cracked open, including what I believe were cold water supply pipes. That would mean that coolant couldn’t get to the reactor core. If you can’t sufficiently get the coolant to the core, it melts down. You don’t have to have to be a nuclear scientist to figure that out.”

Read more

No comments:

Post a Comment